如何使用自然语言处理技术构建有效的长尾关键

一.关键词自动标注简介

1.关键词自动标注

关键词是指能反映文本主题或者意思的词语,如论文中的Keyword字段。大多数人写文章的时候,不会像写论文的那样明确的指出文章的关键词是什么,关键词自动标注任务正是在这种背景下产生的。

目前,关键词自动标注方法分为两类:1)关键词分配,预先定义一个关键词词库,对于一篇文章,从词库中选取若干词语作为文章的关键词;2)关键词抽取,从文章的内容中抽取一些词语作为关键词。

2.应用场景

在文献检索初期,由于当时还不支持全文搜索,关键词就成为了搜索文献的重要途径。随着网络规模的增长,关键词成为了用户获取所需信息的重要工具,从而诞生了如Google、百度等基于关键词的搜索引擎公司。

关键词自动标注技术在推荐领域也有着广泛的应用。如图1所示,当用户阅读图中左边的新闻时,推荐系统可以给用户推荐包含关键词”Dropbox”、”云存储”的资讯,同时也可以根据文章关键词给用户推荐相关的广告。

如何使用自然语言处理技术构建有效的长尾关键

图1基于关键词的资讯推荐系统关键词可以作为用户兴趣的特征,从而满足用户的长尾阅读兴趣。传统的信息订阅系统一般使用类别或者主题作为订阅的内容,如图2所示。如果用户想订阅更细粒度的内容,这类系统就无能为力了。关键词作为一种对文章更细粒度的描述,刚好可以满足上述需求。

如何使用自然语言处理技术构建有效的长尾关键

图2传统的订阅系统除了这些以外,关键词还在文本聚类、分类、摘要等领域中有着重要的作用。比如在聚类时,将关键词相似的几篇文章看成一个类团可以大大提高K-means聚类的收敛速度。从某天所有新闻中提取出这些新闻的关键词,就可以大致知道那天发生了什么事情。或者将某段时间中几个人的微博拼成一篇长文本,然后抽取关键词就可以知道他们主要在讨论些什么话题。

3.现有问题与挑战

文章的关键词通常具有以下三个特点[1]:

可读性。关键词本身应该是有意义的词或者短语。例如,“我们约会吧”是有意义的短语,而“我们”则不是。相关性。关键词必须与文章的主题相关。例如,一篇介绍巴萨在德比中输给皇马的新闻,其中可能顺带提到了“中超联赛”这个关短语,这时就不希望这个短语被选取作为该新闻的关键词。覆盖度。关键词集合能对文章的主题有较好的覆盖度,不能只集中在文章的某个主题而忽略了文章的其他主题。

从上述三个特点,可以看到关键词标注算法的要求以及面临的挑战:a.新词发现以及短语识别问题,怎样快速识别出网络上最新出现的词汇(人艰不拆、可行可珍惜…)?b.关键词候选集合的问题,并不是文章中所有的词语都可以作为候选;c.怎么计算候选词和文章之间的相关性?d.如何覆盖文章的各个主题?

关键词分配算法需要预先定义一个关键词词库,这就限定了关键词候选范围,算法的可扩展性较差,且耗时耗力;关键词抽取算法是从文章的内容中抽取一些词语作为标签词,当文章中没有质量较高的词语时,这类方法就无能为力了。为了解决上述这些问题和挑战,我们设计了层次化关键词自动标注算法.

二.层次化关键词自动标注算法

1.层次化关键词体系

针对新闻的关键词识别任务,我们设计了一套层次化的关键词体系,如图3所示。第一层是新闻频道(体育、娱乐、科技、etc),第二层是新闻的主题(一篇新闻可以包含多个主题),第三次是文章中出现的标签词。

如何使用自然语言处理技术构建有效的长尾关键
图4层次化关键词自动标注结果示例

2.算法流程

从图3中可以看出,主题和标签词依赖于新闻频道,所以在标注一篇新闻的关键词时,首先需要获取新闻的类别,然后根据新闻的类别选择不同的主题模型预测新闻的主题,最后再抽取新闻中的标签词。

在关键词标注方法上,我们融合了关键词分配和关键词抽取两类方法。图5描述了算法处理一篇文章的流程。其中频道和主题的抽取方法属于关键词分配这一类算法,标签词抽取则属于关键词抽取这一类算法。除了上一节中所说的层次化关键词的两个优点之外,我们的算法有如下几点好处:

关键词分配算法有效缓解关键词抽取算法召回不足的问题。在关键词分配算法中,使用频道和主题代替传统的关键词,从而减少词库构建成本、增强算法的可移植性。
如何使用自然语言处理技术构建有效的长尾关键

图7文章的主题关键词

2.3 标签词抽取

标签词抽取包括:生成候选词和相关性计算。下面分别介绍这两部分。

1)生成候选词

通过分词得到的基本词、短语等,过滤掉基本词中的停用词

命名实体(有效解决新词、热词的自动发现)

2)相关性计算

使用线性加权对候选词打分,其特征包括:

TF*IDF候选词和文章频道的相关程度候选词和文章的相似度候选词的长度候选词出现的位置候选词的类型(基本词、实体类型、短语等)

选取相关性得分大于阈值的候选词作为文章的标签词。

3.效果评价

在腾讯网上随机抽取的351篇新闻上做测试,各项指标如表格1所示。由于主题集合的开放性,其召回率很难评价,故只评价其准确率。

表格1 层次化关键词自动标注算法准召率

如何使用自然语言处理技术构建有效的长尾关键

三.接入业务与展望

对抽取错误的关键词进行分析,算法还存在一些问题,后续会针对这些问题继续改进。

泛义词过滤不彻底,后续需要继续优化候选词过滤模块。抽取出来的两个关键词可能是表述同一个语义,后续引入同义词等资源解决。

目前已经接入的公司业务有:腾讯新闻客户端、手机Qzone个性化资讯。欢迎有需求的团队联系我们,使用腾讯文智自然语言处理。

相关阅读:自然语言处理系列篇——海量数据抓取

自然语言处理系列篇——分布式爬虫之WebKit

参考文献

[1] 刘知远. 基于文档主题结构的关键词抽取方法研究[D]. 北京: 清华大学, 2011.

[2] Berger A L, Pietra VJ D, Pietra S A D. A maximum entropy approach to natural languageprocessing[J]. Computational linguistics, 1996, 22(1): 39-71.

[3] Blei D M, Ng A Y,Jordan M I. Latent dirichlet allocation[J]. the Journal of machine Learning research,2003, 3: 993-1022.

本站部分内容由互联网用户自发贡献,该文观点仅代表作者本人,本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规等内容,请举报!一经查实,本站将立刻删除。
本站部分内容由互联网用户自发贡献,该文观点仅代表作者本人,本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如发现本站有涉嫌抄袭侵权/违法违规等内容,请<举报!一经查实,本站将立刻删除。